Posts com Tag ‘água’

Por Olga Satomi YoshidaNilson Massami TairaRamon Vals MartinLeonardo Fonseca LarrubiaHenrique Frank Werner Puhlmann e Ícaro Gonçales

INTRODUÇÃO

 

Este artigo é o primeiro de uma série de artigos sobre uma solução de medição de consumo de água e mapeamento de perfil de consumo, desenvolvida para atender a uma demanda principalmente de Empresas Públicas, que enfrentam o problema de caracterizar o perfil de o consumo de água em suas instalações e que gostariam de ratear os custos associados internamente e fiscalizar inquilinos que alugam espaço nas suas instalações (Lanchonetes, bares, etc.). Também há a necessidade de quantificar os custos associados às instalações sanitárias públicas com função social, especialmente as que servem a população de moradores de rua.

O objetivo deste projeto foi de desenvolver e testar um SISTEMA DE MEDIÇÃO de água PORTÁTIL e de BAIXO CUSTO para que possa ser instalado sem intervenções nas instalações hidráulicas e sem obras civis.   Em muitas edificações a medição do consumo de água só é realizada nas entradas de água do sistema hidráulico com ramais internos encobertos por paredes, muitas vezes de concreto e inacessíveis. Para ratear a conta de água de um grande consumidor é necessário desagregar o volume total consumido pelos usos finais da água ou por usuários, mas os atuais métodos de individualização são extremamente intervencionistas e de alto custo de instalação e manutenção.

Este projeto desenvolveu um SISTEMA DE MEDIÇÃO que está instalado no toalete masculino na entrada do Prédio 56 do IPT. Este sistema desagrega, em tempo real, o volume  consumido no toalete por aparelho sanitário, por turno ou hora e por atividade, caracterizando totalmente o consumo de água dos seus usuários, alunos dos mestrados e colaboradores que trabalham no prédio. Estas medições podem ser acompanhadas em tempo real via aplicativo na nuvem da Amazon Web Services – AWS (Figura 1).

Figura 1: Panorama dos aplicativos e dados acumulados na nuvem AWS

As tecnologias utilizadas para desenvolver este sistema de medição são as mesmas daquelas do IoT Internet of things que, individualmente não são novas, entretanto a inclusão da Internet e das ferramentas analíticas acrescentam a característica inovadora deste sistema de medição, que agregou a capacidade de se ajustar a diferentes instalações hidráulicas e também a capacidade de atribuir consumos de água a qualquer ponto de consumo de água, mesmo quando a aquisição de dados é interrompida pela falta de energia ou carga nas baterias bem como falhas nos sensores ou entupimentos nas mangueiras.  O sistema de medição aloca uma predição do consumo no lugar de um dado de medição perdido com margem de erro de 20 %.

 

ESPECIFICAÇÕES

 

As faturas de água são emitidas em bases mensais a partir de leituras de medidores instalados na entrada dos edifícios, que medem o consumo coletivo de vários pontos de consumo de água ou unidades consumidoras de água: aparelhos sanitários, equipamentos de lavagem, torneiras, apartamentos ou escritórios. Como os volumes consumidos variam muito entre as unidades consumidoras, a atribuição das suas responsabilidades pelo uso final da água e o rateio da conta coletiva demanda em desagregar o volume do consumo coletivo pelas unidades consumidoras tais como apartamentos ou escritórios. A solução existente para este problema requer obras civis para novas instalações hidráulicas de alto custo de implantação e manutenção. A desagregação do perfil do consumo coletivo sem modificar as instalações hidráulicas parece ser ainda um problema sem solução.

Foi proposto o desenvolvimento de um sistema de medição desagregador do consumo coletivo com as seguintes características.

  • PORTÁTIL: os componentes físicos do sistema de medição são facilmente instalados e desinstalados, e transportáveis numa mala de equipamentos;
  • NÃO DESTRUTIVO: a instalação do sistema medidor não requer intervenções nem obras civis, sendo de fácil instalação ou remoção;
  • MINIMAMENTE VISÍVEL (para minimizar eventuais vandalismos);
  • RASTREÁVEL: todos os resultados são rastreáveis com monitoramento a tempo real pela Internet;
  • BAIXO CUSTO: os sensores e a conectividade são de baixo custo;
  • ANALÍTICO: para que o sistema de medição trabalhe com componentes de baixo custo e seja ajustável a qualquer instalação hidráulica sem intervenções, foi feito  uso de ferramentas analíticas e inteligência agregada nas várias instalações monitoradas.

As tecnologias adotadas são as mesmas daquelas muito utilizadas em IoT Internet of Things que não são novas, entretanto a inclusão da Internet e das ferramentas analíticas acrescenta a faceta de inovação do sistema de medição desenvolvido neste projeto.

 

SOLUÇÃO DESENVOLVIDA

 

As tecnologias utilizadas no sistema de medição proposto pertencem à cadeia tecnológica do IoT, Internet of Things. São:

  • Sensores;
  • Conectividade;
  • Armazenamento e processamento na nuvem;
  • Ferramentas analíticas.
  • Aprendizado de máquinas e algoritmos.

O sistema desenvolvido coleta e armazena as medidas e as transmite para um repositório de arquivos numa nuvem gratuita, onde esses dados são armazenados de forma organizada e disponibilizados para acesso de outros locais para monitoramento e análise. O sistema de medição de perfis de consumo é composto por dois sistemas interagentes.

  • Sistema de medição físico distribuído, composto por dispositivos medidores de vazão, um contador de pessoas e um concentrador que faz a ponte entre estes dispositivos e uma nuvem gratuita, para onde os dados são transferidos em tempo real. Foi selecionado o padrão de comunicação ZigBee para realizar a comunicação local;
  • Sistema de medição aplicativo, que processa os dados transferidos em tempo real na nuvem da AWS, utilizando ferramenta analíticas, produzindo medições lidas e medições analíticas e preditivas para substituir dados faltantes ou com erros, disponibilizando os perfis de consumo de água do local monitorado em vários formatos, desagregados por aparelho de consumo, por hora e por turno.

O aplicativo sistema de medição atualmente localiza-se na nuvem da Amazon Web Services – AWS, mas pode ser facilmente ser migrado para outros dispositivos computacionais, tais como computadores, celulares ou tablets. O diagrama genérico dessa solução está representado na Figura 2.

Figura 2: Diagrama do sistema

ESTUDO DE CASO

 

O sistema de medição foi instalado na toalete masculina na entrada do prédio 56 do IPT, que é utilizado pelos alunos de mestrado no período noturno, e durante o dia por colaboradores majoritariamente do CIAM e da Secretaria Acadêmica do IPT. Pode-se observar a fachada externa do local na Figura 3.

Figura 3: Fachada externa do prédio 56 do IPT

Este sistema desagrega, em tempo real, o volume  consumido na toalete por aparelho sanitário, por turno ou hora e por atividade, caracterizando totalmente o consumo de água dos seus usuários, alunos dos mestrados e colaboradores do CIAM. A seguir são apresentadas algumas fotos das instalações do sistema de medição na toalete. Na Figura 4, pode-se observar a instalação dos sensores nos mictórios.

Figura 4: Mictórios instrumentados

De maneira semelhante, foram instrumentados os lavatórios. (Figuras 5 e 6).

Figura 5: Vista panorâmica dos lavatórios

Figura 6: Detalhe da instalação no lavatório

Nesse Estudo de Caso, foi definido que, mesmo medindo separadamente cada ponto de entrega de água, as placas eletrônicas estariam melhor protegidas, se colocadas numa caixa plástica de proteção apoiada sobre um carrinho móvel. Essa ação também facilitou os testes e manuseio das placas eletrônicas e a movimentação do conjunto para facilitar a limpeza do local. Veja a caixa na Figura 7.

Figura 7: Caixa plástica utilizada para abrigar as placas eletrônicas carrinho.

COMPONENTES DA SOLUÇÃO

Dispositivos medidores

O Dispositivo Medidor, mostrado na Figura 8, é composto por diversos blocos funcionais. Ele é alimentado por pilhas ou baterias recarregáveis, dispostas em gabinete externo e ligado à placa por meio de um conector. A tensão de alimentação passa pelo bloco de Fonte de Alimentação, que basicamente cuida da segurança contra sobrecargas e inversão de polaridade para proteção do Dispositivo. Paralelamente é medido o nível de tensão da bateria para que se possa monitorar a carga da bateria e sinalizar quando a bateria está fraca.

Há um módulo integrado, que gerencia o Dispositivo Medidor, e que contém um poderoso microprocessador e módulos de rádio integrados no mesmo bloco. Os módulos de rádio permitem a comunicação por meio de Wi-Fi, Bluetooth e LoRa, sendo que a seleção e configuração é simples. Neste projeto foi utilizado um módulo de rádio adicional de comunicação ZigBee do tipo XBee.

Para medir a vazão de água foram selecionados dois tipos de medidores a serem utilizados conforme a necessidade: Uma chave de fluxo, que fecha um contato quando o fluxo de água é maior do que um determinado patamar e um medidor do tipo roda d’água que gera pulsos conforme a água vai passando pelo medidor.

Os pulsos gerados pelo medidor de vazão são acumulados num contador para que estejam disponíveis para leitura quando o microprocessador o solicitar. Foi prevista a inclusão de um detector de pulsos, que gera um sinal ao microprocessador quando houver pulsos no medidor de vazão com a finalidade de acordar o microprocessador se este estiver “dormindo”. Esse recurso serve para conservar a energia das baterias, e para sinalizar o início e fim do fluxo de água.

Outro recurso disponível no dispositivo são mini chaves programáveis para atribuir um endereço para a placa  e selecionar a configuração para medição usada no dispositivo.

Figura 8: Detalhes do Dispositivo Medidor

Contador de Pessoas

O Contador de Pessoas é composto por um Dispositivo Medidor com firmware customizado para essa função, acoplado a um PIR (sensor infravermelho passivo) e uma fonte de alimentação linear ligada à rede elétrica. Foi necessário realizar uma pequena adaptação para viabilizar o uso da mesma plataforma do Dispositivo Medidor para o contador de pessoas. Os detalhes podem ser observados na Figura 9.

Figura 9: Detalhes do Contador de Pessoas

O contador de pessoas foi desenvolvido a partir do sensor PIR HC-SR501 (Figura 10) que contém um sensor piroelétrico, que detecta níveis de radiação infravermelha. Ele possui dois sensores de captação de infravermelho, e dessa forma consegue capturar a passagem de uma pessoa de acordo com a diferença dos valores obtidos. Para ampliar a região de alcance, utiliza-se uma lente de Fresnel, aumentando o ângulo de atuação para até 100°.

Figura 10: Sensor PIR HC-SR501

Prospecção de soluções alternativas para medir o fluxo de água

No sistema para determinar o perfil de consumo de água, há situações em que não é possível medir diretamente o fluxo da água. Como exemplo, descargas de vasos sanitários sem caixa acoplada externa (descargas com válvulas Hydra) não permitem um acesso ao escoamento de forma não invasiva. Neste caso, o monitoramento de consumo de água pode ser feito pelo tempo de acionamento da descarga e um volume médio de água associado a essa descarga em particular.. Naturalmente, trata-se de uma estimativa em que dados de calibração preliminarmente medidos ou obtidos no catálogo do fabricante da válvula de descarga, ou torneira de acionamento momentâneo, são analisados em conjunto com dados de pressão na linha (coluna de água) e tempo de acionamento. O tempo de acionamento deverá ser determinado com auxílio de um sensor do tipo chave liga/desliga adaptado ao botão de acionamento da válvula, ou através de uma chave de fluxo.

A informação do tempo de abertura da válvula deverá ser transmitida sem fio, preferencialmente por sinal de rádio, para um centralizador que disponibilizará a conexão com a rede local de comunicação ou a publicação em ambiente de nuvem. O transmissor de rádio deverá ser compacto e com baixo consumo de energia para possibilitar a alimentação com bateria de longa duração. Pode-se observar a instalação de um sensor de acionamento de descarga na Figura 11.

Figura 11: Instalação do módulo transmissor e chave sensora no interior do “espelho” da válvula

Gateway

O principal papel do gateway é coordenar a rede de Dispositivos Medidores e o Contador de Pessoas, receber os dados desses dispositivos e enviá-los de forma periódica e organizada para uma nuvem gratuita repositória de arquivos. O período especificado para esse projeto foi de 15 min. O gateway também deverá periodicamente atualizar e sincronizar o seu relógio (RTC), que será a referência de tempo do sistema. Neste projeto foi utilizado um computador industrial de baixo custo baixo consumo de energia, sem ventiladores e que opera sem monitor acoplado. Pode-se observar o equipamento na Figura 12.

Os dados são enviados pelos dispositivos e pelo contador de pessoas na medida em que ocorrem os eventos. Cabe ao gateway associar uma data e hora ao evento de forma que esses eventos possam ser correlacionados no tempo quando forem analisados.

Os pacotes de dados recebidos de cada medidor são tratados e organizados de forma a manterem apenas as informações coletadas, retirando do pacote eventuais informações adicionais, como por exemplo, as informações eventualmente necessárias apenas para a comunicação em rede. Esses pacotes são convertidos em arquivos que recebem um nome que identifique o local de origem desses dados e a data da coleta.

Figura 12: Vista do Gateway

Armazenamento dos dados em nuvem gratuita

A nuvem gratuita é o local onde são armazenados os dados coletados pelo sistema. Dentre as nuvens gratuitas disponíveis no momento, utilizamos a nuvem pCloud, no endereço https://www.pcloud.com/pt/, que oferece até 10 Gigabytes de armazenamento e o uso para fins de pesquisa é gratuito. São oferecidas diversas ferramentas para acesso e controle remoto da área reservada na nuvem. Todos os dados gerados pelo sistema de medição são armazenados em tempo real nesse espaço.

Foi criada uma estrutura de pastas para cada instalação de forma a facilitar a sua identificação e a localização dos arquivos e dispositivos correspondentes. Na Figura 13  pode-se observar essa estrutura montada como exemplo para a fase de prova de conceito que foi realizada no projeto. Cada equipamento tem a sua pasta onde são guardados todos os arquivos gerados pelos medidores do equipamento.

Figura 13: Vista das pastas criadas no pCloud para esse projeto

 

SISTEMA DE MEDIÇÃO APLICATIVO

Armazenamento e processamento na AWS

Os dados coletados e enviados à nuvem pelo sistema físico de medição precisam ser corrigidos e analisados para gerar os perfis de consumo do local monitorado. Foi desenvolvido um aplicativo tipo dashboard com este proposito especifico, e que qualquer um em qualquer lugar e a qualquer tempo possa acessar os resultados do aplicativo. De forma resumida pode-se observar na Figura 14 o esquema do processo da operacionalização dos dados na nuvem relacionando o uso de cada tecnologia utilizada nesse projeto. Em 1 o desenvolvedor cria toda a operacionalização e análise de dado na nuvem e faz ajustes quando necessário. Em 2 o sistema na nuvem conecta-se ao pCloud e baixa e atualiza os dados no computador na nuvem.  Em 3 o usuário solicita o acesso ao aplicativo quando acessa o endereço via web e recebe as informações e análises.

Figura 14: Panorama do sistema de aplicativos na nuvem

RESUMO

 

Este artigo apresentou em linhas gerais o projeto realizado, discorreu sobre as suas partes principais descrevendo e detalhando um pouco de cada uma para que se possa ter uma visão panorâmica do trabalho realizado. Alguns tópicos serão abordados com mais detalhes nos próximos artigos da série.

SISTEMA PORTÁTIL DE MEDIÇÃO DE CONSUMO DE ÁGUA

Outros artigos da série

 

Agradecimentos

Agradeço aos membros da equipe de projetos que desenvolveu esse trabalho, Olga Satomi YoshidaNilson Massami TairaRamon Vals MartinLeonardo Fonseca Larrubia, e Ícaro Gonçales pela coautoria na elaboração deste artigo técnico. Também agradeço ao Eduardo Luiz Machado pela colaboração e cessão do espaço para a instalação do Estudo de Caso, e a Vinicius Kabakian e Paulo Eloy da  Vika Controls pelo apoio técnico e material na forma de consultoria técnica e cessão consignada de medidores de vazão, módulos XBee e materiais diversos que ajudaram a viabilizar o Estudo de Caso.

 

Licença Creative Commons
Esta obra, “SISTEMA PORTÁTIL DE MEDIÇÃO DE PERFIS DE CONSUMO DE ÁGUA – Descrição da Solução“, de  Olga Satomi YoshidaNilson Massami TairaRamon Vals MartinLeonardo Fonseca Larrubia, Henrique Frank Werner PuhlmannÍcaro Gonçales está sob a licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.

por Pedro Bertoleti

                Água é e será o mais precioso recurso que podemos ter, afinal não há vida sem ela. Logo, o uso consciente de água não é somente desejado, mas sim fundamental. Sendo assim, monitorar este consumo para garantir um bom uso de água é uma necessidade. É exatamente neste ponto que este projeto entra: monitorar, de forma inteligente e via Internet, o consumo de água.

                Este projeto se caracteriza por sua multidisciplinaridade, reunindo conceitos de leitura de sensores, processamento de dados, programação em diversas linguagens, utilização de sistema operacional Linux e comunicação de sistemas embarcados com a Internet. Por este motivo, este é um projeto completo para aprendizado de eletrônica e sistemas embarcados.

Em termos de funcionalidades, este projeto compreende:

  • Monitoramento de consumo de água acumulado (em litros)
  • Monitoramento de vazão instantânea (em litros / hora)
  • Estabelecer uma meta de consumo / período e um e-mail de contato. Desta forma, quando o consumo acumulado de água superar a meta informada, um aviso é enviado via e-mail para o e-mail de contato fornecido. Além disso, na página web de utilização do sistema é mostrado um aviso de que a meta de consumo foi atingida.
  • Totalmente acessível ao usuário pela Internet, por qualquer navegador em qualquer sistema operacional.

 

 

Organização do sistema

                O projeto é composto de partes distintas, as quais interagem e funcionam conforme mostra a Figura 1.

IoT Figura 1

Figura 1 – diagrama do projeto completo

Onde:

1) Sistema embarcado bare-metal

Sistema dedicado a ler os pulsos de um sensor de fluxo d´água e medir vazão instantânea e contabilizar o consumo acumulado. Este sistema pode ser calibrado, o que permite sua aplicação em quaisquer condições de fluxo de água e, ainda, possibilita o uso com qualquer sensor do mercado que seja compatível eletricamente e que opere com pulsos proporcionais ao fluxo de água passante.

2) Sistema embarcado Linux

Sistema responsável por se comunicar com o sistema medidor / bare-metal e a Internet. Este é a parte responsável por fazer a interface com a Internet (controle e monitoramento do usuário). Em termos de conectividade com a Internet, este sistema utiliza WiFi, o que permite maior liberdade de posicionamento do mesmo em uma residência, por exemplo.

3) ZigBEE

A comunicação entre o sistema embarcado bare metal e sistema embarcado Linux é feito sem fio, utilizando para isto ZIgBEE (um em cada sistema, ambos com antena chip).

4) Dispositivos finais

Quaisquer dispositivos com navegador web e conectividade com Internet (smartphones, tablets, computadores, etc.). É importante ressaltar que não há restrição quanto a sistemas operacionais, desde que suportem um navegador e permita conexão à Internet (algo que a grande maioria dos sistemas operacionais permite).

                Outro ponto interessante é a comunicação entre dispositivos finais e o sistema Linux embarcado. Esta é feita utilizando MQTT (Message Queue Telemetry Transport), um protocolo de comunicação baseado no TCP/IP e especificado com foco em transporte de mensagens curtas para Internet das Coisas. Ou seja, há garantia de entrega de 100% dos pacotes, além da rapidez devido a transmitir apenas mensagens curtas. Neste protocolo, tanto os dispositivos finais quanto o sistema Linux embarcado se comportam como clientes, sendo o servidor online (este servidor chama-se broker).
Logo, mesmo na ausência de um dos elementos (dispositivos finais ou sistema Linux embarcado), nenhum erro / feedback de sistema offline é emitido.

.

.

Recursos utilizados

Neste projeto, foram utilizados os seguintes recursos de hardware e software:

a) Recursos de hardware

                No sistema bare metal, foi utilizado um microcontrolador PIC 18F4520. A escolha foi devido ao grande número de material e ferramentas de desenvolvimento (inclusive ferramentas free de boa qualidade) disponíveis para este microcontrolador, além da facilidade em achá-lo no mercado (principalmente para compras de baixo volume, algo interessante para os “hobbystas”).
Já no sistema Linux embarcado, foi utilizado um Intel Edison em conjunto com uma placa expansora de I/O Arduino Expansion Board. A escolha do Intel Edison foi feita considerando suas reduzidas dimensões físicas, baixo consumo, alta conectividade (como WiFi já embutido, por exemplo) e boas configurações relacionadas a processamento e memória RAM.

b) Recursos de software

                Como recursos de software, no sistema bare metal foi utilizado a IDE MPLAB v8.83 em conjunto com o compilador CCS. O firmware foi escrito totalmente em linguagem C.

                No sistema embarcado Linux, todo o sistema foi feito utilizando a linguagem Python. A escolha foi feita baseado no grande número de tutoriais e manuais existentes para consulta, além de ser uma linguagem com altíssimo nível de abstração e de fácil aprendizado, permitindo desenvolver um sistema complexo com poucas linhas de código (em comparação a uma linguagem mais tradicional, como a linguagem C, por exemplo) e com pouca experiência na linguagem.

.

Veja o sistema funcionando por completo

Para conferir o sistema funcionando pra valer, veja estes vídeos:

O projeto está detalhadamente explicado e disponível na íntegra para livre consulta e uso nos seguintes links: